Loading...

Course Description

Leading expert Dr. Andrew Hayes, PhD will guide the learner through topics in the statistical analysis of mechanisms responsible for causal effects as well as their contingencies, popularly known as mediation and moderation analysis, as well as their integration as conditional process analysis. This introductory course is recommended to all levels of learners prior to taking Mediation, Moderation and Conditional Process Analysis: A Second Course.

LEARNING STATEMENT
In this course, you will learn about the underlying principles and the practical applications of mediation, moderation and conditional process analysis. It covers six broad topics:

  1. Direct, indirect and total effects in a mediation model
  2. Estimation and inference in single mediator models using ordinary least squares regression
  3. Estimation and inference in models with more than one mediator
  4. Moderation or “interaction” in ordinary least squares regression
  5. Testing, interpreting, probing and visualizing interactions
  6. The integration of mediation and moderation: Conditional process analysis

SUMMARY
Statistical mediation and moderation analyses are among the most widely used data analysis techniques in social science, health and business research. Mediation analysis is used to test hypotheses about various intervening mechanisms by which causal effects operate. Moderation analysis is used to examine and explore questions about the contingencies or conditions of an effect, also called “interaction.” Increasingly, moderation and mediation are being integrated analytically in the form of what has become known as “conditional process analysis,” used when the goal is to understand the contingencies or conditions under which mechanisms operate. An understanding of the fundamentals of mediation and moderation analysis is in the job description of almost any empirical scholar. In this course, you will learn about the underlying principles and the practical applications of these methods using ordinary least squares (OLS) regression analysis and the PROCESS macro for SPSS, SAS and R, invented by the course instructor and widely used in the behavioral sciences. This course is a companion to the instructor’s book Introduction to Mediation, Moderation, and Conditional Process Analysis, published by The Guilford Press. A copy of the book is not required to benefit from the course, but it could be helpful to reinforce understanding.

Course Details

WHO WILL BENEFIT?
This course will be helpful for researchers in any field —including psychology, sociology, education, business, human development, social work, public health, communication and others that rely on social science methodology —who want to learn how to apply the methods of moderation and mediation analysis using widely-used software such as SPSS, SAS and R.

Learners are recommended to have familiarity with the practice of multiple regression analysis and elementary statistical inference. No knowledge of matrix algebra is required or assumed, nor is matrix algebra used in the delivery of course content. Learners should also have some experience with the use of SPSS, SAS or R, including opening and executing data files and programs.

 LEARNING OUTCOMES
Upon completing this course, you will be able to

  • Statistically partition one variable’s effect on another into its primary pathways of influence, direct and indirect
  • Understand modern approaches to inference about indirect effects in mediation models
  • Test competing theories of mechanisms statistically through the comparison of indirect effects in models with multiple mediators
  • Understand how to build flexibility into a regression model that allows a variable’s effect to be a function of another variable in a model
  • Visualize and probe interactions in regression models (e.g., using the simple slopes/spotlight analysis and Johnson-Neyman/floodlight analysis approaches)
  • Integrate models involving moderation and mediation into a conditional process model
  • Estimate the contingencies of mechanisms through the computation and inference about conditional indirect effects
  • Determine whether a mechanism is dependent on a moderator variable
  • Apply the methods discussed in this course using the PROCESS procedure for SPSS, SAS and R
  • Talk and write in an informed way about the mechanisms and contingencies of causal effects

COURSE DELIVERY

This course is delivered in online format asynchronously through pre-recorded video through the user interface at http://ccram.digitalchalk.com. Learners can begin the course when registration is completed, and access to the content is provided for 45 days after registration. There is no limit to the number of times a video can be viewed, and controls for pausing, forwarding, and rewinding are provided on the user interface. Each course also contains many downloadable activities and self-assessments, with corresponding videos describing the answers to each activity and assessment task.

All data files, statistical code, activities, and PDFs of the content of the videos can be downloaded and saved to the learner's storage medium for viewing even after the end of the access period. Videos cannot be downloaded or viewed offline. 

Learners can interact with the instructor through email. 

This course is taught in English. There are no foreign language subtitles or closed captioning available on the videos, and all course materials are provided in English.

COMPUTING
Computer applications will focus on the use of ordinary least squares regression and the PROCESS macro for SPSS, SAS and R, developed by the instructor, which makes the analyses described in this class much easier than they otherwise would be. This is a hands-on course, so maximum benefit results when learners can follow along with analyses using a laptop or desktop computer with a recent version of SPSS Statistics (version 23 or later), SAS (release 9.2 or later, with PROC IML installed) or R (version 3.6; base module only. No packages are used in this course). Learners can choose which statistical package they prefer to use. STATA users can benefit from the course content, but PROCESS makes these analyses much easier and is not available for STATA.

Notes

Instructor bio

Dr. Andrew Hayes is a quantitative methodologist and holds a Ph.D. in Psychology from Cornell University as well as a BA in Psychology from San Jose State University. His research and writing on applied statistical methods has been published in such journals as Psychological Methods, Multivariate Behavioral Research, Behavior Research Methods, British Journal of Mathematical and Statistical Psychology, Psychological Science, Journal of Educational and Behavioral Statistics, American Behavioral Scientist, Communication Monographs, Journal of Communication and Australasian Marketing Journal, among many others.

He is the author of Introduction to Mediation, Moderation, and Conditional Process Analysis (2018) and Regression Analysis and Linear Models (2017), both published by The Guilford Press, and Statistical Methods for Communication Science (2005), published by Routledge. He also invented the PROCESS macro for SPSS, SAS and R (processmacro.org) which is widely used by researchers examining the mechanisms and contingencies of effects. He teaches courses on applied data analysis and also conducts online and in-person workshops on statistical analysis to multidisciplinary audiences throughout the world, most frequently to faculty and graduate students in business schools but also in education, psychology, social work, communication, public health and government researchers. His work has been cited over 190,000 times according to Google Scholar and he has been designated a Highly Cited Researcher by Clarivate Analytics in 2019, 2020, 2021, and 2022. Visit his website to learn more (afhayes.com). 

Prerequisites

Participants should have a basic working knowledge of the principles and practice of multiple regression and elementary statistical inference. No knowledge of matrix algebra is required or assumed, nor is matrix algebra ever used in the course. Some familiarity with the use of SPSS, SAS, or R is assumed.

Loading...

Thank you for your interest...

Unfortunately, this course is not currently open for enrolment.

If you have a Professional and Continuing Education account, take note of the course number and submit a course inquiry to be notified if new sections become available.

Questions?

Required fields are indicated by .